# Why is the Conway ‘Look and Say’ sequences constant defined by this polynom?

In his work on ‘Look and Say’ sequences,for instance beginning with $$1$$.

$$1// 11// 21// 1211// 111221// 312212$$

If $$L_n$$ is the length of the $$n-th$$ sequences, then it follows from Conway work that :

$$\lim_{n\to\infty} \ \frac{L_{n+1}}{L_n} =\lambda=1.303577269034…$$

where $$\lambda$$ is the unique real, stricly positive root of

\begin{align} x^{71} – x^{69} – 2x^{68} – x^{67} + 2x^{66} + 2x^{65} + x^{64} – x^{63} \\ – x^{62} – x^{61} – x^{60} – x^{59} + 2x^{58} + 5x^{57} + 3x^{56} – 2x^{55} – 10x^{54} \\ – 3x^{53}- 2x^{52} + 6x^{51} + 6x^{50} + x^{49} + 9x^{48} – 3x^{47} – 7x^{46} – 8x^{45} \\ – 8x^{44} + 10x^{43} + 6x^{42} + 8x^{41} – 5x^{40} – 12x^{39} + 7x^{38} – 7x^{37} + 7x^{36} \\ + x^{35} – 3x^{34} + 10x^{33} + x^{32} – 6x^{31} – 2x^{30} – 10x^{29} – 3x^{28} + 2x^{27} \\ + 9x^{26} – 3x^{25} + 14x^{24} – 8x^{23} – 7x^{21} + 9x^{20} -3x^{19} – 4x^{18} \\ – 10x^{17} – 7x^{16} + 12x^{15} + 7x^{14} + 2x^{13} – 12x^{12} – 4x^{11} – 2x^{10} + 5x^9 \\ + x^7 – 7x^6 + 7x^5 – 4x^4 + 12x^3 – 6x^2 + 3x – 6 \end{align}

My question is: why that polynom? How did Conway manage to get it? Is it an approximation of the experimental values of $$\lambda$$ he got?

If there exists any paper, I would appreciate to read it. Thanks for your help.