# Why is compactness so important?

I’ve read many times that ‘compactness’ is such an extremely important and useful concept, though it’s still not very apparent why. The only theorems I’ve seen concerning it are the Heine-Borel theorem, and a proof continuous functions on R from closed subintervals of R are bounded. It seems like such a strange thing to define; why would the fact every open cover admits a finite refinement be so useful? Especially as stating “for every” open cover makes compactness a concept that must be very difficult thing to prove in general – what makes it worth the effort?

If it helps answering, I am about to enter my third year of my undergraduate degree, and came to wonder this upon preliminary reading of introductory topology, where I first found the definition of compactness.

The point we often miss is that given an arbitrary topological space on an infinite set $X$, the well-behaved structures which we can actually work with are the pathologies and the rare instances. This is throughout most of mathematics. It’s far less likely that a function from $\Bbb R$ to $\Bbb R$ is continuous, differentiable, continuously differentiable, and so on and so forth. And yet, we work so much with these properties. Why? Because those are well-behaved properties, and we can control these constructions and prove interesting things about them. Compact spaces, being “pseudo-finite” in their nature are also well-behaved and we can prove interesting things about them. So they end up being useful for that reason.