## Finding a limit with two independent variables: $\lim_{(x,y)\to (0,0)}\frac{x^2y^2}{x^2+y^2}$

I must find the following limit: $$\lim_{(x,y)\to (0,0)}\frac{x^2y^2}{x^2+y^2}$$ Substituting $y=mx$ and $y=x^2$, I have found the limit to be $0$ both times, as $x \to 0$. I have thus assumed that the above limit is $0$, and will attempt to prove it. Let $\varepsilon>0$. We have that: $$\left\lvert\frac{x^2y^2}{x^2+y^2}\right\rvert=\frac{x^2y^2}{x^2+y^2}\leq\frac{(x^2+y^2)(x^2+y^2)}{x^2+y^2}=x^2+y^2$$ However, I must find $\delta>0$ such that … Read more