## Consider the universe U={x|x∈Z,1≤x≤10}U=\{x | x \in \mathbb{Z}, 1 \le x \le 10\} and the following subsets of UU

A={2,5,9} B={1,4,7,8,10} C={1,2} In the following questions we denote A′ the complement of A. i.e. A′=U−A A′ A∪B∪C B′−A A△B I can’t access my notes and finding this hard to work out. Thanks. Answer A′=U−A. A∪B∪C={x|x∈A∨x∈B∨x∈C}. B′−A=(U−B)−A. AΔB={x|(x∈A∨x∈B)∧x∉(A∩B)}={x|x∈(A∪B)∧x∉(A∩B)}. I will do 1, you can probably do the rest from here. U={1,2,3,4,5,6,7,8,9,10}. So A′=U−A=U−{2,5,9}={1,3,4,6,7,8,10}. Here are … Read more