# Order of elements is lcm-closed in abelian groups

How can I prove that if $G$ is an Abelian group with elements $a$ and $b$ with orders $m$ and $n$, respectively, then $G$ contains an element whose order is the least common multiple of $m$ and $n$?

It’s an exercise from Hungerford’s book, but it’s not homework. I could not solve it when I take the course on groups and I think it should be easy. There is a hint that says to first prove when $m$ and $n$ are coprimes. I did this part. But I have no idea how to solve the general case.

Thanks.

Let $n = \prod_i p_i^{n_i}$ and $m = \prod_i p_i^{m_i}$, where the $p_i$s are the same. Thus $\mathrm{lcm}(n,m) = \prod_i p_i^{\max(n_i,m_i)}$. Let $N = \{ i : n_i \geq m_i \}$ and $M = \{ i : n_i < m_i \}$. Define $n' = \prod_{i \in N} p_i^{n_i}$ and $m' = \prod_{i \in M} p_i^{m_i}$. Now $a' = a^{n/n'}$ is of order $n'$, and $b' = b^{m/m'}$ is of order $m'$. Since $n',m'$ are coprime, we know that there is an element of order $n'm' = \mathrm{lcm}(n,m)$.