Please help me to solve this integral:
∫π03cosx+√8+cos2xsinxx dx.I managed to calculate an indefinite integral of the left part:
∫cosxsinxx dx= xlog(2sinx)+12ℑ Li2(e2 x i),
where ℑ Li2(z) denotes the imaginary part of the dilogarithm. The corresponding definite integral ∫π0cosxsinxx dx diverges. So, it looks like in the original integral summands compensate each other’s singularities to avoid divergence.I tried a numerical integration and it looks plausible that
∫π03cosx+√8+cos2xsinxx dx?=πlog54,
but I have no idea how to prove it.
Answer
Here’s one way to go.
First, note that
∫π03cosx+√8+cos2xsinxx dx=∫π03x(1+cosx)sinxdx+∫π03xsinx(−1+√1−sin2x9) dx.
For now I’ll simply claim that
∫π03x(1+cosx)sinxdx=πlog64.
(I would be surprised if this integral has not been handled somewhere on this site.)
But
\begin{eqnarray*}
\int_0^\pi\frac{3x}{\sin x} \left(-1+\sqrt{1-\frac{\sin^2x}{9}}\right)\ \mathrm dx
&=& \int_0^\pi\frac{3x}{\sin x} \sum_{k=1}^\infty {1/2\choose k} \frac{(-1)^k}{3^{2k}} \sin^{2k}x \ \mathrm dx \\
&=& \sum_{k=1}^\infty {1/2\choose k} \frac{(-1)^k}{3^{2k-1}}
\int_0^\pi x \sin^{2k-1}x \ \mathrm dx \\
&=& \sum_{k=1}^\infty {1/2\choose k} \frac{(-1)^k}{3^{2k-1}}
\frac{\pi^{3/2}\Gamma(k)}{2\Gamma(k+1/2)} \\
&=& -\pi \sum_{k=1}^\infty \frac{1}{3^{2k-1}2k(2k-1)} \\
&=& -\pi \log \frac{32}{27}.
\end{eqnarray*}
(The last sum can be found by standard methods.
Schematically, \sum \frac{a^{2k-1}}{2k(2k-1)} = \sum \int {\mathrm da} \frac{a^{2k-2}}{2k}.)
Thus, the integral is \pi \log 54 as claimed.
Proof of (1):
We have
\begin{eqnarray*}
\int_0^\pi \frac{3x(1+\cos x)}{\sin x} \ \mathrm dx
&=& \int_{0^+}^\pi \frac{3x(1+\cos x)}{\sin x} \ \mathrm dx \\
&=& 3\int_{0^+}^\pi x \cot\frac{x}{2} \ \mathrm dx
\hspace{5ex}\textrm{(double angle formulas)} \\
&=& 12 \int_{0^+}^{\pi/2} t\cot t \ \mathrm dt
\hspace{5ex} (t = x/2) \\
&=& -12\int_{0^+}^{\pi/2} \log\sin t \ \mathrm dt
\hspace{5ex}\textrm{(integrate by parts)} \\
&=& -6\int_{0^+}^{\pi/2} \log\sin^2 t \ \mathrm dt \\
&=& -6\int_{0^+}^{\pi/2} \log(1-\cos^2 t) \ \mathrm dt \\
&=& 6 \int_{0^+}^{\pi/2} \sum_{k=1}^\infty \frac{1}{k}\cos^{2k}t \ \mathrm dt
\hspace{5ex}\textrm{(series for log)} \\
&=& 6\sum_{k=1}^\infty \frac{1}{k} \int_{0^+}^{\pi/2} \cos^{2k}t \ \mathrm dt
\hspace{5ex} \textrm{(Tonelli’s theorem)}\\
&=& 6\sum_{k=1}^\infty \frac{1}{k}
\frac{\sqrt{\pi}\Gamma(k+1/2)}{2\Gamma(k+1)} \\
&=& 3\pi \sum_{k=1}^\infty {1/2 \choose k}(-1)^{k+1}\frac{2k-1}{k} \\
&=& \pi \log 64.
\end{eqnarray*}
Note that
\begin{eqnarray*}
6\pi \sum_{k=1}^\infty {1/2 \choose k}(-1)^{k+1}
&=& -6\pi \left[\sum_{k=0}^\infty {1/2 \choose k}(-1)^{k} – 1\right] \\
&=& -6\pi[(1-1)^{1/2} – 1] \\
&=& 6\pi
\end{eqnarray*}
and
\begin{eqnarray*}
-3\pi \sum_{k=1}^\infty {1/2 \choose k}(-1)^{k+1} \frac{1}{k}
&=& 3\pi \sum_{k=1}^\infty {1/2\choose k}(-1)^k \int_0^1 x^{k-1} \ \mathrm dx \\
&=& 3\pi \int_0^1 \frac{1}{x} \left[
\sum_{k=0}^\infty {1/2\choose k}(-1)^k x^{k} -1
\right] \ \mathrm dx \\
&=& 3\pi \int_0^1 \frac{1}{x} \left(
\sqrt{1-x} -1
\right) \ \mathrm dx \\
&=& 3\pi(-2+\log 4) \\
&=& -6\pi + \pi\log 64.
\end{eqnarray*}
Attribution
Source : Link , Question Author : Piotr Shatalin , Answer Author : user26872