This problem was posted at I&S a week ago, and no attempts to solve it have been posted there yet. It looks very alluring, so I decided to repost it here:
Prove:
∫10ln(1−x)ln(1+x)ln2xdx=24−4π23−11π4720−12ln2+2ln22−16ln42+π2ln2+π26ln22−4Li4(12)−354ζ(3)+72ζ(3)ln2.I found a paper where some similar integrals are evaluated: J. A. M. Vermaseren, Harmonic sums, Mellin transforms and Integrals, Int. J. Mod. Phys. A, 14 (1999), 2037-2076, DOI: 10.1142/S0217751X99001032
, but it’s not quite easy to read for me. Maybe it could be of some help for this problem.
Answer
This answer is split into 3 main steps.
Step 1: Expressing the integral as a sum
∫10ln(1+x)ln(1−x)ln2x dx=∞∑j=1(−1)jj∞∑k=11k∫10xj+kln2x dx=2∞∑j=1(−1)jj∞∑k=11k(k+j+1)3=2∞∑j=1(−1)jj∞∑k=11(j+1)3k−1(j+1)3(k+j+1)−1(j+1)2(k+j+1)2−1(j+1)(k+j+1)3=2∞∑j=1(−1)jHj+1j(j+1)3−2∞∑j=1(−1)j[ζ(2)−H(2)j+1]j(j+1)2−2∞∑j=1(−1)j[ζ(3)−H(3)j+1]j(j+1)
Step 2a: Value of ∞∑n=1(−1)nHnn
∞∑n=1(−1)nHnn=12ln22−π212
See here for the details.
Step 2b: Value of ∞∑n=1(−1)nHnn2
∞∑n=1(−1)nHnn2=−58ζ(3)
See here for the details.
Step 2c: Value of ∞∑n=1(−1)nHnn3
∞∑n=1(−1)nHnn3=∫−101y[∫y01x[∫x0ln(1−t)t(t−1)dt]dx]dy=2Li4(12)−11π4360+112ln42+74ζ(3)ln2−π212ln22
Tunk-Fey did a calculation of this type here.
Step 2d: Value of ∞∑n=1(−1)nH(2)nn
∞∑n=1H(2)nnxn=∫x0Li2(t)t(1−t)dt=Li3(x)+∫x0Li2(t)1−tdt=Li3(x)−Li2(x)ln(1−x)−∫x0ln2(1−t)tdt=Li3(x)−Li2(x)ln(1−x)+∫1−x1ln2t1−tdt=Li3(x)−Li2(x)ln(1−x)−ln2(1−x)lnx+∫1−x12ln(1−t)lnttdt=Li3(x)−Li2(x)ln(1−x)−ln2(1−x)lnx−2Li2(1−x)ln(1−x)+∫1−x12Li2(t)tdt=Li3(x)−Li2(x)ln(1−x)−ln2(1−x)lnx−2Li2(1−x)ln(1−x)+2Li3(1−x)−2ζ(3)
Therefore
∞∑n=1(−1)nH(2)nn=Li3(−1)−Li2(−1)ln2−ln22ln(−1)−2Li2(2)ln2+2Li3(2)−2ζ(3)=−ζ(3)+π212ln2
You can use polylogarithm identities to simplify the last equation. I took the easy way out and used Wolfram Alpha. Note that contour integration is a slightly more efficient method to solve this sum, however this method is required if I want to solve ∞∑n=1(−1)nH(2)nn2 as well.
Step 2e: Value of ∞∑n=1(−1)nH(3)nn
∞∑n=1H(3)nnxn=∫x0Li3(t)t(1−t)dt=Li4(x)+∫x0Li3(t)1−tdt=Li4(x)−Li3(x)ln(1−x)−∫x0−ln(1−t)Li2(t)tdt=Li4(x)−Li3(x)ln(1−x)−12Li22(x)
Therefore
∞∑n=1(−1)nH(3)nn=Li4(−1)−Li3(−1)ln2−12Li22(−1)=−19π41440+34ζ(3)ln2
Step 2f: Value of ∞∑n=1(−1)nH(2)nn2
This part is rather similar to Tunk-Fey’s answer, so he certainly deserves credit.
∞∑n=1H(2)nn2xn=Li4(x)−2ζ(3)lnx+12Li22(x)+∫−ln2(1−x)lnxxdx+2∫Li3(1−x)−Li2(1−x)ln(1−x)xdx
The blue integral is
∫−ln2(1−x)lnxxdx=−12ln2xln2(1−x)−∫ln2xln(1−x)1−xdx=−12ln2xln2(1−x)+∞∑n=1Hn∫xnln2x dx=−12ln2xln2(1−x)+∞∑n=1Hn∂2nxn+1n+1=−12ln2xln2(1−x)+ln2x∞∑n=1Hnxn+1n+1−2lnx∞∑n=1Hnxn+1(n+1)2+2∞∑n=1Hnxn+1(n+1)3=2lnxLi3(x)−2Li4(x)−2lnx∞∑n=1Hnn2xn+2∞∑n=1Hnn3xn
The orange integral is
2∫Li3(1−x)−Li2(1−x)ln(1−x)xdx=2Li3(1−x)lnx−2Li2(1−x)lnxln(1−x)+2∫ln(1−x)ln2x1−xdx=2Li3(1−x)lnx−2Li2(1−x)lnxln(1−x)−ln2xln2(1−x)−4lnxLi3(x)+4Li4(x)+4lnx∞∑n=1Hnn2xn−4∞∑n=1Hnn3xn
So
∞∑n=1H(2)nn2xn=3Li4(x)+2Li3(1−x)lnx−2Li3(x)lnx−2ζ(3)lnx+12Li22(x)−2Li2(1−x)lnxln(1−x)−ln2xln2(1−x)+2lnx∞∑n=1Hnn2xn−2∞∑n=1Hnn3xn+C
Therefore
∞∑n=1(−1)nH(2)nn2=3Li4(−1)+2Li3(2)ln(−1)−2Li3(−1)ln(−1)−2ζ(3)ln(−1)+12Li22(−1)−2Li2(2)ln(−1)ln(2)−ln2(−1)ln22+2ln(−1)∞∑n=1(−1)nHnn2−2∞∑n=1(−1)nHnn3=17π4480−4Li4(12)−16ln42−72ζ(3)ln2+π26ln22
The grey terms miraculously cancel.
Step 3a: Evaluating 2∞∑j=1(−1)jHj+1j(j+1)3
2∞∑j=1(−1)jHj+1j(j+1)3=2∞∑j=1(−1)jHj+1j−(−1)jHj+1(j+1)3−(−1)jHj+1(j+1)2−(−1)jHj+1j+1=2∞∑j=1(−1)jHjj+2∞∑j=1(−1)jj(j+1)+2∞∑j=1(−1)jHjj3+2+2∞∑j=1(−1)jHjj2+2+2∞∑j=1(−1)jHjj3+2=4Li4(12)−11π4180+16ln42+72ζ(3)ln2−54ζ(3)−π26ln22−π23+2ln22−4ln2+8
Step 3b: Evaluating \displaystyle -\frac{\pi^2}{3}\sum^\infty_{j=1}\frac{(-1)^j}{j(j+1)^2}
\begin{align}
-\frac{\pi^2}{3}\sum^\infty_{j=1}\frac{(-1)^j}{j(j+1)^2}
&=-\frac{\pi^2}{3}\sum^\infty_{j=1}\frac{(-1)^j}{j}-\frac{(-1)^j}{(j+1)^2}-\frac{(-1)^j}{j+1}\\
&=\frac{\pi^2}{3}\ln{2}+\frac{\pi^4}{36}-\frac{\pi^2}{3}+\frac{\pi^2}{3}\ln{2}-\frac{\pi^2}{3}\\
&=\frac{\pi^4}{36}+\frac{2\pi^2}{3}\ln{2}-\frac{2\pi^2}{3}
\end{align}
Step 3c: Evaluating \displaystyle 2\sum^\infty_{j=1}\frac{(-1)^jH_{j+1}^{(2)}}{j(j+1)^2}
\begin{align}
& \ \ \ \ \ 2\sum^\infty_{j=1}\frac{(-1)^jH_{j+1}^{(2)}}{j(j+1)^2}\\
&=2\sum^\infty_{j=1}\frac{(-1)^jH_{j+1}^{(2)}}{j}-\frac{(-1)^jH_{j+1}^{(2)}}{(j+1)^2}-\frac{(-1)^jH_{j+1}^{(2)}}{j+1}\\
&=4\sum^\infty_{j=1}\frac{(-1)^jH_{j}^{(2)}}{j}+2\sum^\infty_{j=1}\frac{(-1)^j}{j(j+1)^2}+2\sum^\infty_{j=1}\frac{(-1)^jH_j^{(2)}}{j^2}+2+2\\
&=-8{\rm Li}_4\left(\frac{1}{2}\right)+\frac{17\pi^4}{240}-\frac{1}{3}\ln^4{2}-7\zeta(3)\ln{2}-4\zeta(3)+\frac{\pi^2}{3}\ln^2{2}+\frac{\pi^2}{3}\ln{2}-\frac{\pi^2}{6}-4\ln{2}+8\\
\end{align}
Step 3d: Evaluating \displaystyle -2\zeta(3)\sum^\infty_{j=1}\frac{(-1)^j}{j(j+1)}
\begin{align}
-2\zeta(3)\sum^\infty_{j=1}\frac{(-1)^j}{j(j+1)}
&=-2\zeta(3)\sum^\infty_{j=1}\frac{(-1)^j}{j}+2\zeta(3)\sum^\infty_{j=1}\frac{(-1)^j}{j+1}\\
&=4\zeta(3)\ln{2}-2\zeta(3)\\
\end{align}
Step 3e: Evaluating \displaystyle 2\sum^\infty_{j=1}\frac{(-1)^jH_{j+1}^{(3)}}{j(j+1)}
\begin{align}
2\sum^\infty_{j=1}\frac{(-1)^jH_{j+1}^{(3)}}{j(j+1)}
&=2\sum^\infty_{j=1}\frac{(-1)^jH_{j+1}^{(3)}}{j}-2\sum^\infty_{j=1}\frac{(-1)^jH_{j+1}^{(3)}}{j+1}\\
&=4\sum^\infty_{j=1}\frac{(-1)^jH_{j}^{(3)}}{j}+2\sum^\infty_{j=1}\frac{(-1)^j}{j(j+1)^3}+2\\
&=-\frac{19\pi^4}{360}+3\zeta(3)\ln{2}-\frac{3}{2}\zeta(3)-\frac{\pi^2}{6}-4\ln{2}+8
\end{align}
Step 4: Obtaining the final result
Summing the results from steps 3a, 3b, 3c, 3d and 3e gives
\int^1_0\ln(1+x)\ln(1-x)\ln^2{x} \ {\rm d}x=24-\frac{4\pi^2}3-\frac{11\pi^4}{720}-12\ln2\\+2\ln^22-\frac16\ln^42+\pi ^2\ln2+\frac{\pi^2}6\ln^22-4\operatorname{Li}_4\!\left(\tfrac12\right)-\frac{35}4\zeta(3)+\frac72\zeta(3)\ln2.
hence completing the proof.
Attribution
Source : Link , Question Author : Oksana Gimmel , Answer Author : Community