How to prove that $\frac{\zeta(2) }{2}+\frac{\zeta (4)}{2^3}+\frac{\zeta (6)}{2^5}+\frac{\zeta (8)}{2^7}+\cdots=1$?

How can one prove this identity?

$$\frac{\zeta(2) }{2}+\frac{\zeta (4)}{2^3}+\frac{\zeta (6)}{2^5}+\frac{\zeta (8)}{2^7}+\cdots=1$$

There is a formula for $\zeta$ values at even integers, but it involves Bernoulli numbers; simply plugging it in does not appear to be an efficient approach.


$(1)$: expand $\zeta(2n)=\sum\limits_{k=1}^\infty\frac1{k^{2n}}$
$(2)$: change the order of summation
$(3)$: sum of a geometric series
$(4)$: partial fractions
$(5)$: telescoping sum

Source : Link , Question Author : E.H.E , Answer Author : robjohn

Leave a Comment