# Finding the limit of nn√n!\frac {n}{\sqrt[n]{n!}}

I’m trying to find

I tried couple of methods: Stolz, Squeeze, D’Alambert

Thanks!

Edit: I can’t use Stirling.

Let $\displaystyle{a_n=\frac{n^n}{n!}}$. Then the power series $\displaystyle{\sum_{n=1}^\infty a_n x^n}$ has radius of convergence $R$ satisfying $\displaystyle{\frac{1}{R}=\lim_{n\to \infty} \sqrt[n]{a_n}=\lim_{n\to\infty}\frac{a_{n+1}}{a_n}}$, provided these limits exist. The first limit is what you’re looking for, and the second limit is $\displaystyle{\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n}$.

Added: I just happened upon a good reference for the equality of limits above, which gives a more general result which is proved directly without reference to power series. Theorem 3.37 of Rudin’s Principles of mathematical analysis, 3rd Ed., says:

For any sequence $\{c_n\}$ of positive numbers,

In the present context, this shows that
Assuming you know what $\displaystyle{\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n}$ is, this shows both that the limit in question exists (in case you didn’t already know by other means) and what it is.

From the comments: User9176 has pointed out that the case of the theorem above where $\displaystyle{\lim_{n\to\infty}\frac{c_{n+1}}{c_n}}$ exists follows from the Stolz–Cesàro theorem applied to finding the limit of $\displaystyle{\frac{\ln(c_n)}{n}}$. Explicitly,

provided the latter limit exists, where the second equality is by the Stolz–Cesàro theorem.