# Equivalent Definitions of the Operator Norm

How do you prove that these four definitions of the operator norm are equivalent?
\begin{align*} \lVert A\rVert_{\mathrm{op}} &= \inf\{ c\;\colon\; \lVert Av\rVert\leq c\lVert v\rVert \text{ for all }v\in V\}\\ &=\sup\{ \lVert Av\rVert\;\colon\; v\in V\text{ with }\lVert v\rVert\leq 1\}\\ &=\sup\{\lVert Av\rVert\;\colon\; v\in V\text{ with }\lVert v\rVert = 1 \}\\ &=\sup\left\{ \frac{\lVert Av\rVert}{\lVert v\rVert}\;\colon\; v\in V\text{ with }v\neq 0\right\}. \end{align*}\begin{align*} \lVert A\rVert_{\mathrm{op}} &= \inf\{ c\;\colon\; \lVert Av\rVert\leq c\lVert v\rVert \text{ for all }v\in V\}\\ &=\sup\{ \lVert Av\rVert\;\colon\; v\in V\text{ with }\lVert v\rVert\leq 1\}\\ &=\sup\{\lVert Av\rVert\;\colon\; v\in V\text{ with }\lVert v\rVert = 1 \}\\ &=\sup\left\{ \frac{\lVert Av\rVert}{\lVert v\rVert}\;\colon\; v\in V\text{ with }v\neq 0\right\}. \end{align*}

Notice that $S_2 \le S_1$ and as $\|Av\| /\|v\| = \| A(v / \|v\|)\|$ we have $S_3 \le S_2$. Now if $\|v\|\le 1$ we have $\|Av\| \le \|Av\| /\|v\|$. Then $S_1 \le S_3$ and
Then $I \le S_3$ and by definition of $\sup$ we have
Then $S_3 = I$.