## Christoffel-Darboux type identity

The classical Christoffel-Darboux identity for Hermite polynomials reads n∑k=0Hk(x)Hk(y)2kk!=12n+1n!Hn+1(x)Hn(y)−Hn(x)Hn+1(y)x−y. I am interested in a similar identity, where one of the indices is shifted by one, explicitly Fn(x,y):=n∑k=0Hk+1(x)Hk(y)2k+1(k+1)!=xn∑k=01k+1Hk(x)Hk(y)2kk!−n∑k=0kk+1Hk−1(x)Hk(y)2kk!, where the recursion relation Hk+1(x)=2xHk(x)−2kHk−1(x) was used. In the first term Christoffel-Darboux cannot be applied due to the 1/(k+1) prefactor and the second term is not quite Fn−1(y,x) … Read more