Are there real-life relations which are symmetric and reflexive but not transitive?

Inspired by Halmos (Naive Set Theory) . . .

For each of these three possible properties [reflexivity, symmetry, and transitivity], find a relation that does not have that property but does have the other two.

One can construct each of these relations and, in particular, a relation that is

symmetric and reflexive but not transitive:


It is clearly not transitive since $(a,b)\in R$ and $(b,c)\in R$ whilst $(a,c)\notin R$. On the other hand, it is reflexive since $(x,x)\in R$ for all cases of $x$: $x=a$, $x=b$, and $x=c$. Likewise, it is symmetric since $(a,b)\in R$ and $(b,a)\in R$ and $(b,c)\in R$ and $(c,b)\in R$. However, this doesn’t satisfy me.

Are there real-life examples of $R$?

In this question, I am asking if there are tangible and not directly mathematical examples of $R$: a relation that is reflexive and symmetric, but not transitive. For example, when dealing with relations which are symmetric, we could say that $R$ is equivalent to being married. Another common example is ancestry. If $xRy$ means $x$ is an ancestor of $y$, $R$ is transitive but neither symmetric nor reflexive.

I would like to see an example along these lines within the answer. Thank you.


$\quad\quad x\;$ has slept with $\;y$ ${}{}{}{}{}$

Source : Link , Question Author : 000 , Answer Author : amWhy

Leave a Comment