I have this inequality with 0<A,B<π and a real |α|<1:
f(A,B):=|αsin(A)+sin(A+B)|−|sin(B)|<0Numerically, I see that regardless of the value of α, the area in which f(A,B)<0 is always half of the total area π2.
I appreciate any hints and comments on how I can prove this.
Answer
Let us assume α∈[0,1) (the case of α∈(−1,0] is similar). As sinB>0 for B∈(0,π), the inequality f(A,B)<0 amounts to
αsinA<sinB−sin(A+B),−[sinB+sin(A+B)]<αsinA.(⋆)
Notice that
sinA=2sin(A2)cos(A2),
sinB−sin(A+B)=−2sin(A2)cos(A2+B) and
sinB+sin(A+B)=2cos(A2)sin(A2+B).
Substituting in (⋆) and cancelling the positive terms
2sin(A2) and 2cos(A2), we obtain the equivalent inequalities
αcos(A2)<−cos(A2+B),−sin(A2+B)<αsin(A2).(⋆⋆)
In (⋆⋆), the LHS of the first inequality and the RHS of the second are non-negative. Hence A2+B - which belongs to (0,3π2) - must be in the second or the third quadrant; otherwise, the first inequality in (⋆⋆) does not hold. Let us analyze these cases separately:
- If π2≤A2+B≤π, then the second inequality in (⋆⋆) holds automatically (its RHS is always non-negative); and the first one can be written as
αcos(A2)<cos(π−A2−B). Applying the strictly decreasing function cos−1:[0,1]→[0,π2] yields:
π−A2−B<cos−1(αcos(A2)).
This of course implies A2+B≥π2. But we also need A2+B≤π. Combining these, the bounds for B in terms of A∈(0,π) are given by
π−A2−cos−1(αcos(A2))≤B≤π−A2.
The difference of the two bounds is cos−1(αcos(A2)). Consequently, the contribution to the area of
{(A,B)∣f(A,B)<0} is
∫{(A,B)∣f(A,B)<0,π2≤A2+B≤π}1=∫π0cos−1(αcos(A2))dA.(1) - If π≤A2+B≤3π2, all terms appearing in (⋆⋆) are non-negative. We first rewrite these inequalities as
αcos(A2)<cos(A2+B−π),sin(A2+B−π)<αsin(A2).
Next applying strictly monotonic functions
cos−1:[0,1]→[0,π2]
and sin−1:[0,1]→[0,π2] to them results in:
A2+B−π<cos−1(αcos(A2)),A2+B−π<sin−1(αsin(A2)).
Hence the upper bound
B<π+min
which of course implies \frac{A}{2}+B\leq\frac{3\pi}{2}. But \pi\leq\frac{A}{2}+B is also required. We therefore arrive at the bounds for B in terms of A\in(0,\pi):
\pi-\frac{A}{2}\leq B\leq
\pi+\min\left\{\cos^{-1}\left(\alpha\cos\left(\frac{A}{2}\right)\right),\sin^{-1}\left(\alpha\sin\left(\frac{A}{2}\right)\right)\right\}-\frac{A}{2}.
The difference of the bounds is \min\left\{\cos^{-1}\left(\alpha\cos\left(\frac{A}{2}\right)\right),\sin^{-1}\left(\alpha\sin\left(\frac{A}{2}\right)\right)\right\}. Therefore, the contribution to the area of
\{(A,B)\mid f(A,B)<0\} is
\int_{\{(A,B)\mid f(A,B)<0,\, \pi\leq\frac{A}{2}+B\leq\frac{3\pi}{2}\}}\mathbf{1}\\
=\int_{0}^\pi\min\left\{\cos^{-1}\left(\alpha\cos\left(\frac{A}{2}\right)\right),\sin^{-1}\left(\alpha\sin\left(\frac{A}{2}\right)\right)\right\}{\rm{d}}A.\quad (2)
Adding (1) and (2), the area of \{(A,B)\mid f(A,B)<0\} turns out to be
\int_{0}^\pi\cos^{-1}\left(\alpha\cos\left(\frac{A}{2}\right)\right){\rm{d}}A\\+
\int_{0}^\pi\min\left\{\cos^{-1}\left(\alpha\cos\left(\frac{A}{2}\right)\right),\sin^{-1}\left(\alpha\sin\left(\frac{A}{2}\right)\right)\right\}{\rm{d}}A.\quad
(\star\star\star)
So the question is if the quantity above coincides with \frac{\pi^2}{2} for all \alpha\in [0,1). First, we claim that the minimum above is
\sin^{-1}\left(\alpha\sin\left(\frac{A}{2}\right)\right). Notice that:
\sin^{-1}\left(\alpha\sin\left(\frac{A}{2}\right)\right)
\leq\cos^{-1}\left(\alpha\cos\left(\frac{A}{2}\right)\right)\\
\Leftrightarrow
\cos^{-1}\left(\alpha\sin\left(\frac{A}{2}\right)\right)+\cos^{-1}\left(\alpha\cos\left(\frac{A}{2}\right)\right)\geq\frac{\pi}{2};
and the cosine of the last angle appearing above is
\left[\alpha\sin\left(\frac{A}{2}\right)\right]\left[\alpha\cos\left(\frac{A}{2}\right)\right]
-\sqrt{1-\alpha^2\sin^2\left(\frac{A}{2}\right)}
\sqrt{1-\alpha^2\cos^2\left(\frac{A}{2}\right)};
which is negative as
\alpha\sin\left(\frac{A}{2}\right)<\sqrt{1-\alpha^2\cos^2\left(\frac{A}{2}\right)} and
\alpha\cos\left(\frac{A}{2}\right)<\sqrt{1-\alpha^2\sin^2\left(\frac{A}{2}\right)} due to |\alpha|<1. We conclude that (\star\star\star) is equal to
\int_{0}^\pi\cos^{-1}\left(\alpha\cos\left(\frac{A}{2}\right)\right){\rm{d}}A+
\int_{0}^\pi\sin^{-1}\left(\alpha\sin\left(\frac{A}{2}\right)\right){\rm{d}}A.
Call the expression above h(\alpha). The goal is to establish h(\alpha)=\frac{\pi^2}{2} for any \alpha\in[0,1]. This is clear when \alpha=0, and so it suffices to show \frac{{\rm{d}}h}{{\rm{d}}\alpha}\equiv 0. One has
\frac{{\rm{d}}h}{{\rm{d}}\alpha}=
-\int_0^{\pi}\frac{\cos\left(\frac{A}{2}\right)}{\sqrt{1-\alpha^2\cos^2\left(\frac{A}{2}\right)}}{\rm{d}}A
+\int_0^{\pi}\frac{\sin\left(\frac{A}{2}\right)}{\sqrt{1-\alpha^2\sin^2\left(\frac{A}{2}\right)}}{\rm{d}}A;
which is clearly zero because the change of variable A\mapsto\pi-A indicates
\int_0^{\pi}\frac{\cos\left(\frac{A}{2}\right)}{\sqrt{1-\alpha^2\cos^2\left(\frac{A}{2}\right)}}{\rm{d}}A
=\int_0^{\pi}\frac{\sin\left(\frac{A}{2}\right)}{\sqrt{1-\alpha^2\sin^2\left(\frac{A}{2}\right)}}{\rm{d}}A.
This concludes the proof.
Attribution
Source : Link , Question Author : math2021 , Answer Author : KhashF